澳门新葡新京,澳门新葡新京官方网站

学术报告
学术报告
美国韦恩州立大学张智民教授报告通知
澳门新葡新京:许美玲??发布时间:2018-12-25?? 浏览次数:461

    应澳门新葡新京官方网站数学系吴勃英教授和郭玉坤副教授的邀请,美国韦恩州立大学数学系张智民教授将于近日来访我校,并做两场讲座,以下是报告信息,欢迎感兴趣的师生参加。

 

报告一:数学漫谈

摘要本讲座的对象是本科生,研究生,以及数学教育工编辑。从什么是数学谈起,讲到数学的美,数学研究的内容,数学的分支,无处不在的数学,有趣的数学,数学的社会性,数学的应用,数学家以及数学家的使命。希翼能够激发年轻人学习数学的兴趣,树立为科学研究而奋斗的远大目标 

时间201912(周三)下午14:00-15:30

地点:格物楼503报告厅

 

报告二:How many PDE numerical eigenvalues can we trust, and how to get more out of it?

摘要: When approximating PDE eigenvalue problems by numerical methods such as finite difference and finite element, it is common knowledge that only a small portion of numerical eigenvalues are reliable. However, this knowledge is only qualitative rather than quantitative in the literature. In this talk, we will investigate the number of “trusted” eigenvalues by the finite element (and the related finite difference method results obtained from mass lumping) approximation of 2mth order elliptic PDE eigenvalue problems. Our two model problems are the Laplace and bi-harmonic operators, for which a solid knowledge regarding magnitudes of eigenvalues are available in the literature. Combining this knowledge with a priori error estimates of the finite element method, we are able to figure out roughly how many “reliable” eigenvalues can be obtained from numerical approximation under a pre-determined convergence rate. One effective way to have more reliable eigenvalues is to use recovery technique. We will discuss the Polynomial Preserving Recovery (PPR) and its application in achieving higher accuracy in eigenvalue approximations, especially for non self-adjoint problems.

时间201912(周三)下午15:30-17:00

地点:格物楼503报告厅

 

 

报告人概况张智民:中国科技大学学士(1982)硕士(1985),马里兰大学(University of Maryland at College Park)博士 (1991) 德州理工大学(Texas Tech University )客座助理教授(Visiting Assistant Professor1991)助理教授( Assistant Professor Tenure-track1993)副教授(Associate Professor with tenure1997);韦恩州立大学(Wayne State University )副教授(1999)教授(2002), Charles H. Gershenson Distinguished Faculty Fellow (2014) 现任北京计算科学研究中心应用与计算数学研究部主任,曾任和现任Mathematics of ComputationJournal of Scientific Computing7个国际学术杂志编委。他的研究方向是偏微分方程数值解,包括有限元,有限体积,谱方法等,发表SCI论文150提出的多项式保持重构Polynomial Preserving RecoveryPPR)格式于2008年被国际上广为流行的大型商业App COMSOL Multiphysics 采用,并延用至今。如今PPR 已经成为这个商业App中的一条指令。

 

 

XML 地图 | Sitemap 地图